Die industriële elektriese motormark groei teen 'n vinnige pas en sal na verwagting 'n waarde van $150 miljard teen 2020 bereik.
Om mededingend in hierdie bedryf te bly, is dit belangrik om hoëdoeltreffende motorontwerp en -vervaardiging te optimaliseer.
In hierdie blogpos sal ons die nuutste industriële elektriese motorproduksieneigings bespreek en hoe om hoëdoeltreffendheidmotors vir jou besigheid te optimaliseer.
In onlangse jare, met die ontwikkeling van kragelektronika, rekenaartegnologie en beheerteorie, het die wêreldmark van industriële elektriese motors baie gegroei.
Met die opkoms van seldsame aarde permanente magneet materiale en magnetiese komposiete, het verskeie nuwe, hoë-doeltreffendheid en spesiale motors een na die ander verskyn.
Aangesien die internasionale gemeenskap toenemende belang heg aan energiebesparing, omgewingsbeskerming en volhoubare ontwikkeling, het die vervaardiging van hoëdoeltreffendheidmotors die ontwikkelingsrigting van wêreldwye industriële motors geword.
In die konteks van globale energieverbruikvermindering, is hoëdoeltreffendheid- en energiebesparingsbeleide ingestel om die versnelde ontwikkeling van die globale industriële motorvervaardigingsbedryf verder te bevorder.
Transformasie van die motorbedryf na intelligensie en energiebesparing
Tans is die tegnologie van gewone lae-spanning elektriese motors relatief volwasse, maar daar is nog meer tegniese drempels op die gebied van hoë-krag hoë-spanning elektriese motors, elektriese motors vir spesiale omgewingstoepassings en super hoë-doeltreffendheid elektriese motors.
Die omvattende ontwikkelingstendens van die wêreldwye motormark word hoofsaaklik in die volgende punte gemanifesteer:
die bedryf ontwikkel in die rigting van intelligensie en integrasie.
Tradisionele motorvervaardiging het die kruisbevrugting van gevorderde elektroniese tegnologie en intelligente beheertegnologie besef.
Die toekoms vir die industriële gebruik van klein en mediumgrootte motorstelsels, deurlopende ontwikkeling, optimalisering van intelligente beheertegnologie, om die motorstelselbeheer, sensasie, aandrywing en ander funksies van geïntegreerde ontwerp en vervaardiging te bereik, is die ontwikkelingstendens van die elektriese motorbedryf.
Vervaardiging van elektriese motors tot differensiasie, spesialisasie, hoë doeltreffendheid, energiebesparende rigting
Elektriese motorprodukte word wyd gebruik in verskeie velde soos energie, vervoer, petroleum, chemiese industrie, metallurgie, mynbou en konstruksie.
Met die verdieping van die globale ekonomie en die voortdurende verbetering van die vlak van wetenskap en tegnologie, word die situasie dat dieselfde tipe motor vir verskillende aard en verskillende geleenthede op dieselfde tyd in die verlede gebruik word, gebreek, en die elektriese motorprodukte ontwikkel geleidelik in die rigting van professionaliteit, differensiasie en spesialisasie.
In onlangse jare het die globale omgewingsbeskermingsbeleid 'n duidelike beleidsrigting uitgewys vir die verbetering van die doeltreffendheid van elektriese motors en hul beheerstelsels. Daarom moet die elektriese motorbedryf die energiebesparende transformasie van bestaande produksietoerusting versnel, hoë-doeltreffende groen produksieproses bevorder, nuwe generasie energiebesparende elektriese motors, elektriese motorstelsels en beheerprodukte ontwikkel, toetstoerusting, die tegniese standaardstelsel van elektriese motors en stelsels verbeter, en pogings aanwend om die kernmededingendheid van elektriese motors en stelselprodukte te verbeter.
Geoptimaliseerde ontwerp en materiaalkeuse van energiedoeltreffende elektriese motors
Energiedoeltreffende elektriese motors gebruik materiaal van hoë gehalte en geoptimaliseerde ontwerp om hoër doeltreffendheid te bereik.
For example, the higher the aluminum content in the rotor, the higher the slot filling factor in the stator, and the lower the resistance losses.
Optimized rotor structure and rotor-stator air gap reduce stray load losses.
Improved cooling fan design minimizes wind resistance losses for electric motor cooling, and higher quality and thinner steel stacks are used for rotor and stator cores to greatly reduce magnetization losses.
Optimize the size of the stator and rotor laminations and the quality of the steel used in them
Hysteresis losses and eddy current losses together are called core losses, and about 20% of the total losses are caused by eddy current and core saturation.
The eddy currents generated in the laminations move relative to the changing magnetic field, resulting in significant power losses.
Stacked stator cores reduce eddy current losses and based on iron mass, resistivity, density, thickness, frequency and flux density, eddy current losses can be minimized with more stacks.
Hysteresis losses are generated in the magnetic circuit when the flux is constantly changing.
Most of the load materials used in electric motors are steels used in the stator and rotor cores, and flux density and core losses are minimized by reducing the laminations thickness.
Hysteresis losses can be reduced by annealing a better grade of steel for the laminations to change the grain structure for easier magnetization.
Eddy current losses are reduced by increasing the resistivity of the silicon containing steel, but the silicon content increases die wear during stamping because it increases the hardness of the steel.
Steel crystals damaged during stamping severely reduce the magnetic quality of the affected volume.
Annealing flattens the stack and recrystallizes the crystals damaged during the stamping process, thus extending a thin sheet thickness into the stack.
Stator lamination using dipping bath process
Impregnating the stator strengthens the electrical insulation of the stator winding against chemicals or harsh environmental influences and enhances heat dissipation.
Thermoset plastics including epoxy resins, phenolic resins and polyesters are used to impregnate the stator.
Immersion is the immersion of the stator into the resin for a longer period of time to ensure optimal penetration and protection.
Another method of impregnation is known as vacuum pressure, which uses a tank that is first evacuated and then pressurized to achieve penetration of the stator.
Achieving the extraction of air pockets from the electrical windings improves the thermal conductivity of the windings.
Optimize the design of the stator tank to maximize the volume of insertable copper
The slot fill rate affects the stator winding mass to some extent.
A low slot fill rate leads to 60% of the total losses, so in order to reduce the total losses, the stator winding mass must be larger, thus reducing the resistance.
Compared to standard efficiency motors, high efficiency electric motors contain more than 20% extra copper and the insulated windings of the stator are placed in slots in the steel sheet.
The cross-sectional area must be large enough to meet the rated power of the electric motor. Generally, induction motors use open or semi-enclosed stator slots.
In a semi-enclosed slot, the slot opening is much smaller than the slot width, making winding more difficult and time-consuming to manufacture than in an open slot.
The number of stator slots must be selected during the design phase, as that number affects weight, cost and operating characteristics.
The advantages of electric more slots are reduced leakage resistance, reduced tooth pulsation losses and improved overload capacity. The disadvantages of electric more stator slots are increased cost, increased weight, increased magnetization current, increased iron losses, poor cooling, increased temperature rise and reduced efficiency.
Rotor die casting using high quality pure aluminum
A custom designed rotor maximizes starting torque, reduces conductor resistance and increases efficiency.
Most induction motor rotors are of squirrel cage design. They are robust, simple and less expensive, but they have a lower starting torque.
Copper rotors improve efficiency, but are both difficult and expensive to manufacture.
Optimal air gap between rotor and stator
The air gap is the radial distance between the rotor and stator of a motor in a standard radial electric motor.
In order to improve the efficiency of the design, the optimum air gap needs to be maintained.
Air gap dimensions relate to the design of the stator, rotor, electric motor housing and bearings.
All of these affect the precise alignment of the stator and rotor shafts.
Use of high performance electromagnetic enameled wire
Magnet or enameled wire is an electrolytically refined copper or aluminum wire that has been fully annealed and coated with one or more layers of insulation.
For example, wires with a total of 12 layers of insulation are used. Typical insulation films, which increase with temperature range, are polyethylene, polyurethane, polyester and polyimide up to 250°C.
Thicker rectangular or square magnet wire is wrapped with high temperature polyimide or fiberglass tape, using more copper, and larger conductor bars and conductors increase the cross-sectional area of the stator and rotor windings, which reduces winding resistance and decreases losses due to current, and the high-efficiency electric motor stator windings typically have 20% more copper in them.
The electric motor consists of many parts, each part provides different structural and functional properties, resulting in different functions in the motor system, and each part provides functional advantages and disadvantages that ultimately affect the motor input performance.
By optimizing the performance of each component of the electric motor, the performance of the electric motor is ultimately optimized.
Konklusie
At present, the electric motor manufacturing industry is gradually changing from "big and complete" to "specialization and intensification" to cope with the globalized market competition.
In the future, driven by the low-carbon environmental protection policy, industrial motors will be fully developed towards green energy saving.
Dongchun motor is electric motor manufacturer in China, who is focus on high effiency motor.